healthy_back_18 ([personal profile] healthy_back_18) wrote2008-04-15 03:32 am

Дисплазии - коллекции ради II

http://genmed.ru/med_b1_401_03.html

ГЛАВА 319. НАСЛЕДСТВЕННЫЕ БОЛЕЗНИ СОЕДИНИТЕЛЬНОЙ ТКАНИ

Дарвин Дж. Прокоп (DarwinJ. Prockop)

Наследственные болезни соединительной ткани относятся к наиболее распро­страненным генетическим синдромам. К ним относят чаще всего несовершенный остеогенез, синдромы Элерса —Данло и Марфана.

Классификация этих синдромов основывается обычно на результатах работы McKusick, который проанализировал признаки, симптомы и морфологические изменения у большого числа больных. Однако классификация осложняется гете­рогенностью этих синдромов. У больных, членов некоторых семей, отсутствует, например, один или несколько кардинальных признаков. В других семьях выяв­ляют больных с двумя или тремя разными синдромами. Гетерогенность может быть обнаружена и среди членов одной семьи. Например, у одних больных в семье определяется дислокация суставов, характерная для синдрома Элерса—Данло, у других — хрупкость костей, типичная для несовершенного остеогенеза, а у третьих с тем же генным дефектом симптомы вообще отсутствуют. Из-за этих трудностей классификация, основанная на клинических данных, в конце концов, должна будет смениться классификацией, основанной на результатах анализа мо­лекулярных дефектов в отдельных генах.

Организация и химический состав соединительной ткани.Соединительная ткань (или ткани) имеет довольно расплывчатое определение: внеклеточные ком­поненты, служащие опорой и связывающие воедино клетки, органы и ткани. К со­единительным тканям относятся в основном кости, кожа, сухожилия, связки и хрящи. Они включают в себя такие кровеносные сосуды и синовиальные простран­ства и жидкости. На самом деле, соединительная ткань входит в состав всех органов и тканей в виде мембран и перегородок.

Соединительные ткани содержат большие количества жидкости в виде фильт­рата крови, в котором находится почти половина всего альбумина организма. Большинство соединительных тканей заполнены или окружены фибриллами или волокнами коллагена (табл.319-1) и содержат протеогликаны.

Различия соединительных тканей до некоторой степени обусловлены незначи­тельной вариабельностью размеров и ориентации коллагеновых фибрилл. В сухо­жилиях они собраны в толстые параллельные пучки, в коже расположены менее упорядочение. В костях фибриллы строго организуются вокруг гаверсовых каналов, ригидность этой архитектуре придает гидроксиапатит. Основной коллаген сухо­жилий, кожи и костей (коллаген I типа) состоит из двух полипептидных цепей, продуктов разных структурных генов. Различия между перечисленными тканями в большой мере связаны с разной экспрессией структурных генов коллагена I типа, т. е. с разными количеством синтезируемого коллагена, толщиной и длиной обра­зующихся фибрилл и их расположением.

Некоторые различия между соединительными тканями обусловлены путст­вием ткане- или органоспецифических генных продуктов. Кости содержат белки, играющие важнейшую роль в минерализации коллагена, аорта — эластин и сопут­ствующий микрофибриллярный белок, несколько типов коллагена и другие компо­ненты. Базальная мембрана, лежащая под всеми эпителиальными и эндотелиаль­ными клетками, содержит коллаген IV типа и другие тканеспецифические макро­молекулы, а кожа и некоторые другие соединительные ткани —небольшие коли­чества особых видов коллагена.



Таблица 319-1. Состав соединительной ткани в разных органах



Орган


Известные компоненты


Примерное количество, % сухой массы


Свойства

Кожа (дерма), связки, сухо­жилия


Коллаген I типа


80


Пучки волокон с высоким пределом прочности при растяжении

Коллаген III типа


5—15


Тонкие фибриллы

Коллаген IV типа, лами­нин, энтактин, нидоген


Менее 5


В базальной мембране под эпителием и в кровенос­ных сосудах

Коллаген V—VII типов


Менее 5


Распределение и функции неясны

Фибронектин


Менее 5


Связан с коллагеновыми волокнами и клеточной поверхностью

Протеогликаны


0,5


Обеспечивают упругость

Гиалуронат


0,5


Обеспечивает упругость

Кость (демине-рализован-ная)


Коллаген1 типа


90


Сложная организация фибрилл

Коллаген V типа


1—2


Функция неясна

Протеогликаны


1


» »

Сиалопротеины


1


» »

Остеонектин


2—3


Роль в оссификации

Остеокальцин


1


Возможная роль в осси­фикации

а 2-Гликопроте ин


1


То же

Аорта


Коллаген I типа


20—40






Коллаген III типа


20—40


Тонкие фибриллы

Эластин, микрофибрил­лярный белок


20—40


Аморфное вещество, элас­тические фибриллы

Коллаген IV типа, лами­


Менее 5


В базальной мембране

нин, энтактин, нидоген











Коллаген V и VI типов


Менее 2


Функция неясна

Протеогликаны


Менее 3


Мукополисахариды, в ос­новном хондроитин­сульфат и дерматан-сульфат; гепарансуль­фат в базальной мемб­ране

Хрящ


Коллаген II типа


40—50


Тонкие фибриллы

Коллаген IX и Х типов


5—25


Возможная роль в созре­вании

Протеогликаны


15—20


Обеспечивают упругость

Гиалуронат


0,5—2


Обеспечивает упругость



Протеогликановые структуры изучены недостаточно. Установлено примерно пять белковых ядер, и к каждому поединен один вид мукополисахаридов или несколько. К основным мукополисахаридам кожи и сухожилий относятся дерматансульфат и хондроитин-4-сульфат, аорты — хондроитин-4-сульфат и дерматан-сульфат, хряща — хондроитин-4-сульфат, хондроитин-6-сульфат и кератансульфат. Базальная мембрана содержит гепарансульфат.





Биосинтез соединительной ткани.Синтез соединительных тканей заключается в самосборке из молекулярных субъединиц с точными размерами, формой и по­верхностными свойствами. Молекула коллагена представляет собой длинный тонкий стержень, состоящий из трех а-полипептидных цепей, скрученных в жесткую, похожую на канат структуру (319-1). Каждая a-цепь состоит из простых повторяющихся аминокислотных последовательностей, в которых каждый третий остаток представлен глицином (Гли). Поскольку каждая a-цепь содержит около 1000 аминокислотных остатков, ее аминокислотную последовательность можно обозначить как (-Гли-Х-У-)ззз, где Х и Y—любые аминокислоты, кроме глицина. Тот факт, что каждый третий остаток — это глицин (самая малая аминокислота), весьма важен, так как он должен входить в стерически ограниченное пространство, в котором сходятся все три нити тройной спирали. Две a-цепи в коллагене I типа одинаковы и называются a1(1). Третья же имеет несколько другую аминокислот­ную последовательность и называется a2(1). Некоторые типы коллагена состоят из трех одинаковых a-цепей. Те участки a-цепей, в которых на месте Х находится пролин или на месте Y — гидроксипролин, придают жесткость всей молекуле кол­лагена и удерживают ее в форме тройной спирали. Гидрофобные и заряженные аминокислоты в положениях Х и Y имеют вид кластеров на поверхности молекулы и определяют способ, которым одна молекула коллагена спонтанно связывается с другими, образуя цилиндрические фигуры, характерные для каждой коллагеновой фибриллы ( 319-1).





319-1. Схематическое изображение синтеза фибриллы коллагена I типа в фибробласте.

Внутриклеточные этапы сборки молекулы проколлагена (а): гидроксилирование и глико­зилирование про-а-цепей начинается вскоре после того, как их N-концы проникнут в цистерны шероховатой эндоплазматической сети, и продолжается после сближения С-пропептидов трех цепей и образования между ними дисульфидных связей. Расщепле­ние проколлагена с образованием коллагена, самосборка коллагеновых молекул в сво­бодно прилегающие друг к другу нити и перекрестное связывание их в фибриллы (б): отщепление пропептидов может происходить в криптах фибробласта или в некотором отдалении от клетки (воспроизведено с разрешения из ProckopandKivinkko).





Если структура и функция молекулы коллагена достаточно просты, то ее синтез весьма сложен ( 319-1). Белок синтезируется в виде предшест­венника, называемого проколлагеном, масса которого примерно в 1,5 раза больше массы молекулы коллагена. Эта разница обусловлена путствием в проколлагене дополнительных аминокислотных последовательностей как на N-, так и на С-конце. Для образования нитей коллагена необходимо действие специфической N-протеиназы, отщепляющей N-концевые пропептиды, и специфической С-протеиназы, отщепляющей С-концевые пропептиды. По мере сборки про-a-цепей коллагена на рибосомах эти цепи проникают в цистерны шероховатой эндоплазматической сети. Гидрофобные «сигнальные пептиды» на N-концах отщепляются, и начинается ряд дополнительных посттрансляционных реакций. Остатки пролина в позиции Yпод действием специфической гидроксилазы, требующей аскорбиновой кислоты, пре­вращаются в оксипролин. Другая гидроксилаза в путствии аскорбиновой кис­лоты точно так же гидроксилирует остатки лизина в позиции Y. Необходимость аскорбиновой кислоты для действия обеих гидроксилаз, вероятно, объясняет, поче­му при цинге не заживают раны ( гл.76). Многие гидроксилизиновые остатки подвергаются дальнейшей модификации, гликолизируясь галактозой или галактозой и глюкозой. К С-концевым пропептидам каждой цепи поединяется крупный, богатый маннозой олигосахарид. С-концевые пропептиды сближаются, и между ними образуются дисульфидные связи. Когда в каждой про-a-цепй окажется при­мерно 100 гидропролиновых остатков, белок спонтанно сворачивается, приобретая конформацию тройной спирали. Свернувшись, белок под действием N- и С-протеиназ превращается в коллаген.

Фибриллы, образованные путем самосборки коллагеновой молекулы, обладают высоким пределом прочности при растяжении, и эта прочность еще более увели­чивается за счет перекрестных реакций с образованием ковалентных связей между a-цепями соседних молекул. Первый этап перекрестного связывания — окисление ферментом лизиноксидазой аминогрупп в остатках лизина и гидроксилизина с образованием альдегидов; последние затем и формируют прочные ковалентные связи друг с другом.

Коллагеновые фибриллы и волокна во всех тканях, кроме костной, стабильны на протяжении почти всей жизни и распадаются только при голодании или исто­щении тканей. Однако фибробласты, синовиальные и другие клетки способны продуцировать коллагеназы, расщепляющие коллагеновую молекулу в точке, от­стоящей от N-конца примерно на 3/4 длины молекулы, и тем самым запускают дальнейшее разрушение коллагеновых фибрилл и волокон другими протеиназами. В костях же непрерывно происходят разрушение и ресинтез коллагеновых фибрилл, что служит необходимым условием перестройки кости. Таким образом, для сборки и сохранения коллагеновых фибрилл в тканях требуется координированная экспрес­сия ряда генов, продукты которых необходимы для посттрансляционного формиро­вания этих фибрилл или участвуют в метаболизме коллагена.

Сборка фибрилл коллагена I типа аналогична сборке фибрилл коллагена II типа в хряще и коллагена III типа в аорте и коже. При формировании же нефиб­риллярных коллагенов, таких как тип IV в базальных мембранах, не происходит отщепления глобулярных доменов на концах молекул. Сохраняясь, эти домены участвуют в самосборке мономеров в плотные сети. Волокна эластина компонуются тем же путем. Однако эластиновый мономер представляет собой одну полипеп­тидную цепь без четкой трехмерной структуры, самообразующую аморфные элас­тические волокна.

Синтез протеогликанов сходен с синтезом коллагена в том отношении, что он начинается со сборки полипептидной цепи, называемой белковым ядром. В цис­тернах шероховатой эндоплазматической сети белковое ядро модифицируется путем поединения остатков Сахаров и сульфата, которые образуют крупные мукополисахаридные боковые цепи. После секреции во внеклеточное пространство белковое ядро с его мукополисахаридными боковыми цепями связывается с соеди­няющим белком, а затем с длинноцепочечной гиалуроновой кислотой, образуя зрелый протеогликан с относительной молекулярной массой в несколько миллионов.

Построение кости следует тем же самым принципам, что и сборка других соединительных тканей ( также гл.335). Первый этап заключается в отложении остеоидной ткани, которая состоит в основном из коллагена I типа ( 319-1). Далее, «еще не до конца выясненным путем происходит минерализация остеоидной ткани; особые белки, такие как остеонектин, связываются со специфическими участками коллагеновых фибрилл и затем хелируют кальций, начиная минерали­зацию.

Значение для наследственных болезней.Наше знание химии и биохимии соединительных тканей недостаточно полно, но тем не менее позволяет понять некоторые клинические особенности наследственных болезней этих тканей. Напри­мер, понятно, почему многие из этих болезней имеют системные проявления. Поскольку весь коллаген I типа синтезируется на одних и тех же двух структурных генах, любая мутация этих генов должна экспрессироваться во всех тканях, содер­жащих коллаген I типа. Тканевая или органная специфичность болезни может быть объяснена двояко. Один из механизмов может заключаться в том, что бо­лезнь вызывается мутацией гена, экспрессирующегося только в одной или двух соединительных тканях. Например, у больных с синдромом Элерса — Данло IV типа имеются мутации генов проколлагена III типа, и его проявления ограничены изме­нениями кожи, аорты и кишечника, т. е. тканей, богатых коллагеном III типа. Вто­рая причина тканевой специфичности болезней более тонка. Разные участки моле­кул коллагена выполняют разные биологические функции. Так, если речь идет о коллагене I типа, то отщепление N-концевых пропептидов необходимо для сборки крупных коллагеновых фибрилл и волокон в связках и сухожилиях. При неполном отщеплении N-пропептидов белок образует тонкие фибриллы. Следовательно, боль­ные с такими мутациями генов проколлагена I типа, препятствующих эффектив­ному отщеплению N-пропептидов, должны страдать преимущественно дислокацией бедренных и других крупных суставов. У них редко бывают переломы, поскольку формирование толстых фибрилл коллагена I типа, по-видимому, менее важно для нормальной функции костей, чем для нормальной функции суставных связок. Наоборот, у больных с мутациями, затрагивающими структуру других участков молекулы проколлагена I типа, может преобладать костная патология.

Современные данные о химии матрикса позволяют понять причины гетеро­генности симптоматики и у больных с одинаковыми генными дефектами. Экспрес­сия гена коллагена или протеогликана зависит от координированной экспрессии генов ферментов, принимающих участие в посттрансляционной модификации этих соединений, а также от экспрессии генов других компонентов того же матрикса. В связи с этим конечное влияние этой мутации на функциональные свойства такой сложной структуры, как кость или крупный кровеносный сосуд, зависит от различий в «генетическом фоне» разных лиц, а именно от различий в экспрессии .большого семейства других генов, продукты которых влияют на ту же структуру. Клинические проявления болезни должны зависеть и от других факторов, влияю­щих на соединительную ткань, таких как физическая нагрузка, травмы, питание и гормональные аномалии. Следовательно, имеется широкая основа для вариабель­ности клинических проявлений у больных с одним и тем же дефектом.

Выявление молекулярных дефектов.Для того чтобы выявить молекулярный дефект у больного с наследственной болезнью соединительной ткани, требуются большие усилия (319-2). Одна из причин этого заключается в том, что у двух не состоящих в родственной связи больных, даже с идентичными клиническими симптомами, молекулярные дефекты различны. Вторая причина сводится к тому, что белки и протеогликаны соединительной ткани представляют собой крупные молекулы, которые трудно перевести в раствор и получить в чистом виде. Кроме того, у больных дефект определяет синтез аномального, быстро распадающегося белка. В связи с этим при анализе тканей трудно установить, какой именно генный продукт аномален. Третья причина — большие размеры генов компонентов матрикса. В случае проколлагена I типа ген про-al (1)-цепи состоит из 18 000 пар осно­ваний, а ген про-а2(1)-цепи — из 38000 пар. Каждый из этих генов имеет при­мерно 50 экзонов, большинство которых сходны по структуре. С помощью доступ­ной в настоящее время техники рекомбинантной ДНК выяснение места мутации одного или нескольких оснований — задача неимоверной трудности. Однако новые методы позволяют, вероятно, преодолеть большинство этих проблем.





Несовершенный остеогенез



Общие проявления.Термином «несовершенный остеогенез» обозначают наслед­ственные аномалии, обусловливающие хрупкость костей (319-3). Диагноз уста





319-2.Приблизительная локализация мутаций в структуре проколлагена I типа.

Римскими цифрами обозначен конкретный тип синдрома Элерса —Данло (СЭД) или несовершенного остеогенеза (НО), обсуждаемых в тексте. Экзоны, в которых происходят специфические делеции, пронумерованы в направлении от 3- к 5-концу гена. Другие делеции обозначены примерным числом утраченных аминокислот; «аа 988» означает, что остаток глицина в положении 988 a1-цепизамещен цистеином. Как сообщалось в тексте, мутация про-a21означает вставку 38 пар оснований в дополнительную последователь­ность и обнаружена у больных с атипичным синдромом Марфана (СМ); про-a2^looaasозначает делецию примерно 100 аминокислот при a-варианте несовершенного остео­генеза II типа.

Про-a^—мутация, ведущая к укорочению npo-al-цепи; про-(^—мутация, ведущая к укорочению ^1ро-а2-цепи; про-а!^5—мутация, ведущая к появлению цистеинового остатка;пpo-a:~ma"—мутация, ведущая к избыточному содержанию маннозы в одной или обеих про-а-цепях; про-а2"— неизвестная структурная мутация, препятствующая расщеплению цепи N-протеиназой; про-а21— мутация, ведущая к удлинению про-а2-цепи; про-с^0"— мутация, меняющая структуру С-концевого пропептида про-а2-цепи (модифи­цировано и воспроизведено с разрешения из ProckopandKivirikko).

Продолжение: http://healthy-back.livejournal.com/34202.html

Post a comment in response:

This account has disabled anonymous posting.
If you don't have an account you can create one now.
HTML doesn't work in the subject.
More info about formatting